If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13k^2-38k=0
a = 13; b = -38; c = 0;
Δ = b2-4ac
Δ = -382-4·13·0
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-38}{2*13}=\frac{0}{26} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+38}{2*13}=\frac{76}{26} =2+12/13 $
| 4x-10=6x-14 | | 7(8-x)=56-21= | | 2(x+9)=30+18= | | 60=100x5 | | 9(x-3)=10x18 | | t+11=-2t-16 | | 6k-13=7-4k | | 6=b-25 | | 88x99=Y | | 1.5p=4 | | 5(2+7x)=45 | | 2=18+o | | 726=n+282 | | 7x+7=10x-36 | | 3e-5=11 | | 5x-3-2x=3x+1 | | (4s-6)+(3s-2)=180 | | 10-5(x-3)=25 | | x/2.5-15=-15 | | 8^x+5=16^2x+5 | | 3x-9=+3x | | ((8x^2)-(40))=470 | | G+h=0 | | 135-36b=9b | | 8-1y=14-3y | | y=125.000(6.25)^23 | | x^2-21=4 | | 4=5x=3x=2 | | 3x+7+10+17=180 | | 50=(3x-5)x | | 72/b=2 | | 1.55p=108.5 |